二进制 八卦 八卦与二进制 二进制数 加法和乘法 位值思想
简要介绍

记录或标志数目的方法,主要指数字符号的表现形态和记数工具的使用。人类最早记数靠堆积石块木棍或摆弄指趾,后来使用结绳和契刻。随着记载数目的增大出现了进位制。受各地自然环境和各种社会条件的影响,产生出不同的记数法。现在世界上通用的记数法是十进制记数法,它包含十个数码:0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9,逢十进位,称为进率。电子计算机中常采用二进制和八进制记数法,二进制进率是二,八进制进率是八。

在德国图灵根著名的郭塔王宫图书馆(Schlossbiliothke zu Gotha)保存着一份弥足珍贵的手稿,其标题为:“1与0,一切数字的神奇渊源。这是造物的秘密美妙的典范,因为,一切无非都来自上帝。”

这是德国天才大师莱布尼茨(Gottfried Wilhelm Leibniz,1646 - 1716)的手迹。但是,关于这个神奇美妙的数字系统,莱布尼茨只有几页异常精炼的描述。用现代人熟悉的话,我们可以对二进制作如下的解释:

2^0 = 1

2^1 = 2

2^2 = 4

2^3 = 8

2^4 = 16

2^5 = 32

2^6 = 64

2^7 = 128

以此类推。

把等号右边的数字相加,就可以获得任意一个自然数。我们只需要说明:采用了2的几次方,而舍掉了2几次方。二进制的表述序列都从右边开始,第一位是2的0次方,第二位是2的1次方,第三位时2的2次方……,以此类推。一切采用2的成方的位置,我们就用“1”来标志,一切舍掉2的成方的位置,我们就用“0”来标志。这样,我们就得到了下边这个序列:

1 1 1 0 0 1 0 1

2的7次方

2的6次方

2的5次方

2的4次方

2的3次方

2的2次方

2的1次方

2的0次方

128+64+32+0+0+4+0+1=229

在这个例子中,十进制的数字“229”就可以表述为二进制的“11100101”。任何一个二进制数字最左边的一位都是“1”。通过这个方法,用1到9和0这十个数字表述的整个自然数列都可用0和1两个数字来代替。0与1这两个数字很容易被电子化:有电流就是1;没有电流就是0。这就整个现代计算机技术的根本秘密所在。

记数法基本信息
中文名记数法外文名Notation
定义记录或标志数目的方法分类二进制
八进制
十进制
通用记数法十进制记数法学科数学