记数法 简单分群数系 位置制记数法 “零” 大数记法 有理数系 实数理论的完善 复数的扩张 综述
回顾数系的历史发展,似乎给人这样一种印象:数系的每一次扩充,都是在旧的数系中添加新的元素。如分数添加于整数负数添加于正数无理数添加于有理数,复数添加于实数。但是,现代数学的观点认为:数系的扩张,并不是在旧的数系中添加新元素,而是在旧的数系之外去构造一个新的代数系,其元素在形式上与旧的可以完全不同,但是,它包含一个与旧代数系同构的子集,这种同构必然保持新旧代数系之间具有完全相同的代数构造。当人们澄清了复数的概念后,新的问题是:是否还能在保持复数基本性质的条件下对复数进行新的扩张呢?答案是否定的。当哈米尔顿试图寻找三维空间复数的类似物时,他发现自己被迫要做两个让步:第一,他的新数要包含四个分量;第二,他必须牺牲乘法交换率。这两个特点都是对传统数系的革命。他称这新的数为“四元数”。“四元数”的出现昭示着传统观念下数系扩张的结束。1878年,富比尼(F.Frobenius, 1849 – 1917) 证明:具有有限个原始单元的、有乘法单位元素的实系数先行结合代数,如果服从结合律,那就只有复数和实四元数的代数。

数学的思想一旦冲破传统模式的藩篱,便会产生无可估量的创造力。哈米尔顿的四元数的发明,使数学家们认识到既然可以抛弃实数和复数的交换性去构造一个有意义、有作用的新“数系”,那么就可以较为自由地考虑甚至偏离实数和复数的通常性质的代数构造。数系的扩张虽然就此终止,但是,通向抽象代数的大门被打开了



数系基本信息
中文名数系外文名numerical system
分类数学最初简单分群数系
地区巴比伦人功能反应当前数学发展水平